Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0282606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000787

RESUMO

The climate has drastically changed over the past two decades. Rising temperatures and climate change may lead to increased evapotranspiration, specifically soil evaporation, causing water to evaporate and salt to accumulate in the soil, resulting in increased soil salinity. As a result, there is a need to evaluate methods for predicting and monitoring the effects of salinity on crop growth and production through rapid screening. Our study was conducted on 20 wheat genotypes, 10 sensitive and 10 tolerant, exposed to two salinity levels (90 and 120 mM NaCl) with the control under greenhouse conditions. Our results revealed significant differences in the genotypes' response to salinity. Salt stress decreased chlorophyll index in sensitive genotypes but increased chlorophyll a and carotenoids in tolerant genotypes at 90 mM. Salt stress also increased protein, proline, lipoxygenase, and reactive thiobarbituric acid levels in all wheat genotypes. The study suggests that plant photosynthetic efficiency is a reliable, non-destructive biomarker for determining the salt tolerance of wheat genotypes, while other biochemical traits are destructive and time-consuming and therefore not suitable for rapid screening.


Assuntos
Tolerância ao Sal , Triticum , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Clorofila A/metabolismo , Genótipo , Salinidade , Solo , Estresse Fisiológico/genética
2.
Front Plant Sci ; 13: 929378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388510

RESUMO

Rising atmospheric CO2 concentrations are known to influence the response of many plants under drought. This paper aimed to measure the leaf gas exchange, water use efficiency, carboxylation efficiency, and photosystem II (PS II) activity of Datura stramonium under progressive drought conditions, along with ambient conditions of 400 ppm (aCO2) and elevated conditions of 700 ppm (eCO2). Plants of D. stramonium were grown at 400 ppm and 700 ppm under 100 and 60% field capacity in a laboratory growth chamber. For 10 days at two-day intervals, photosynthesis rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, water use efficiency, intrinsic water use efficiency, instantaneous carboxylation efficiency, PSII activity, electron transport rate, and photochemical quenching were measured. While drought stress had generally negative effects on the aforementioned physiological traits of D. stramonium, it was found that eCO2 concentration mitigated the adverse effects of drought and most of the physiological parameters were sustained with increasing drought duration when compared to that with aCO2. D. stramonium, which was grown under drought conditions, was re-watered on day 8 and indicated a partial recovery in all the parameters except maximum fluorescence, with this recovery being higher with eCO2 compared to aCO2. These results suggest that elevated CO2 mitigates the adverse growth effects of drought, thereby enhancing the adaptive mechanism of this weed by improving its water use efficiency. It is concluded that this weed has the potential to take advantage of climate change by increasing its competitiveness with other plants in drought-prone areas, suggesting that it could expand into new localities.

3.
Front Plant Sci ; 13: 918038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161001

RESUMO

Due to advances in the industrial development of light-emitting diodes (LEDs), much research has been conducted in recent years to get a better understanding of how plants respond to these light sources. This study investigated the effects of different LED-based light regimes on strawberry plant development and performance. The photosynthetic pigment content, biochemical constituents, and growth characteristics of strawberry plants were investigated using a combination of different light intensities (150, 200, and 250 µmol m-2 s-1), qualities (red, green, and blue LEDs), and photoperiods (14/10 h, 16/8 h, and 12/12 h light/dark cycles) compared to the same treatment with white fluorescent light. Plant height, root length, shoot fresh and dry weight, chlorophyll a, total chlorophyll/carotenoid content, and most plant yield parameters were highest when illuminated with LM7 [intensity (250 µmol m-2 s-1) + quality (70% red/30% blue LED light combination) + photoperiod (16/8 h light/dark cycles)]. The best results for the effective quantum yield of PSII photochemistry Y(II), photochemical quenching coefficient (qP), and electron transport ratio (ETR) were obtained with LM8 illumination [intensity (250 µmol m-2 s-1) + quality (50% red/20% green/30% blue LED light combination) + photoperiod (12 h/12 h light/dark cycles)]. We conclude that strawberry plants require prolonged and high light intensities with a high red-light component for maximum performance and biomass production.

4.
Front Plant Sci ; 13: 959203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968146

RESUMO

Globally, climate change could hinder future food security that concurrently implies the importance of investigating drought stress and genotype screening under stressed environments. Hence, the current study was performed to screen 45 diverse maize inbred lines for 18 studied traits comprising phenological, physiological, morphological, and yield characters under optimum and water stress conditions for two successive growing seasons (2018 and 2019). The results showed that growing seasons and water regimes significantly influenced (p < 0.01) most of the studied traits, while inbred lines had a significant effect (p < 0.01) on all of the studied traits. The findings also showed a significant increase in all studied characters under normal conditions compared to drought conditions, except chlorophyll content, transpiration rate, and proline content which exhibited higher levels under water stress conditions. Furthermore, the results of the principal component analysis indicated a notable distinction between the performance of the 45 maize inbred lines under normal and drought conditions. In terms of grain yield, the drought tolerance index (DTI) showed that Nub60 (1.56), followed by Nub32 (1.46), Nub66 (1.45), and GZ603 (1.44) were the highest drought-tolerant inbred lines, whereas Nub46 (0.38) was the lowest drought-tolerant inbred line. These drought-tolerant inbred lines were able to maintain a relatively high grain yield under normal and stress conditions, whereas those drought-sensitive inbred lines showed a decline in grain yield when exposed to drought conditions. The hierarchical clustering analysis based on DTI classified the forty-five maize inbred lines and eighteen measured traits into three column- and row-clusters, as inbred lines in cluster-3 followed by those in cluster-2 exhibited greater drought tolerance in most of the studied traits. Utilizing the multi-trait stability index (MTSI) criterion in this study identified nine inbred lines, including GZ603, as stable genotypes in terms of the eighteen studied traits across four environments. The findings of the current investigation motivate plant breeders to explore the genetic potential of the current maize germplasm, especially in water-stressed environments.

5.
Front Plant Sci ; 13: 900347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982701

RESUMO

Among heavy metals, cadmium (Cd) is one of the toxic metals, which significantly reduce the growth of plants even at a low concentration. Cd interacts with various plant mechanisms at the physiological and antioxidant levels, resulting in decreased plant growth. This research was conducted to exploit the potential of synergistic application of zinc oxide nanoparticles (ZnO NPs) and Moringa oleifera leaf extract in mitigation of Cd stress in linseed (Linum usitatissimum L.) plants. The main aim of this study was to exploit the role of M. oleifera leaf extract and ZnO NPs on Cd-exposed linseed plants. Cd concentrations in the root and shoot of linseed plants decreased after administration of MZnO NPs. Growth parameters of plants, antioxidant system, and physiochemical parameters decreased as the external Cd level increased. The administration of MZnO NPs to the Cd-stressed linseed plant resulted in a significant increase in growth and antioxidant enzymes. Furthermore, the antioxidative enzymes superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) exhibited a considerable increase in the activity when MZnO NPs were applied to Cd-stressed seedlings. The introduction of MZnO NPs lowered the levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the linseed plant grown in Cd-toxic conditions. The NPs decreased electrolyte leakage (EL) in Cd-stressed linseed leaves and roots. It was concluded that synergistic application of ZnO NPs and M. oleifera leaf extract alleviated Cd stress in linseed plants through enhanced activity of antioxidant enzymes. It is proposed that role of MZnO NPs may be evaluated for mitigation of numerous abiotic stresses.

6.
Front Plant Sci ; 13: 961378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035688

RESUMO

Predicting the germination behavior of parthenium weed against different conditions of temperature and osmotic stress is helpful for studying the growth and development history of parthenium in different ecological contexts. Sustainable weed control strategies based on population-based threshold (PBT) models are profitable tools for crop planting date, herbicide application, and tillage operation time. To predict the emergence of parthenium by using thermal time (TT), hydrotime (HT), and hydrothermal time (HTT) analyses, seeds were exposed to varying constant temperatures (5, 10, 15, 20, 25, 30, 35, and 40°C) and water potentials (- 0.25, - 0.5, - 0.75, and - 1.0 MPa) under a controlled environment. Parthenium seeds showed better responses in terms of higher germination percentage and lower germination time at 20 and 25°C. The use of the germination modeling approach proposed the base temperature (7.2°C), optimum temperature (20°C), and ceiling temperature (42.8°C) for this weed. Moreover, germination behavior was also studied at different water potentials under different temperature regimes (10, 20, and 30°C). The HTT model predicted higher germination percentages (82.8 and 54.8%) of parthenium seeds at water potentials from 0 to -0.25 MPa, respectively, under a temperature of 20°C, and also identified a base water potential (Ψb(50) of - 0.54 MPa for germination. In conclusion, the use of the HTT modeling approach is helpful for predicting the emergence response of parthenium in a changing climate and ultimately supportive in time scheduling of parthenium weed management in cropping systems.

7.
Sci Rep ; 12(1): 14648, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030324

RESUMO

The effect of triad application of the phytohormone 24-epibrassinolide (EBL), the polyamine spermine (Spm), and the element silicon (Si) has not yet been considered on plant growth and behavior in water-stressed conditions. We aimed to evaluate the impact of single/dual/triad application of 24-epibrassinolide (EBL), spermine (Spm), and silicon (Si) on the growth, photosynthetic metabolites, and antioxidant enzymes in the maize plant exposed to water stress. This study was conducted as a potential drought resistance system and plants' maintenance against oxidative damage. In this regard, one maize hybrid (Paya) was grown under well-watered and water-deficit conditions (interrupted irrigation at the flowering and the filling seed stages) with and without foliar spraying of EBL, Spm, and/or Si. Drought conditions remarkably reduced growth, productivity, water-related content (RWC), and chlorophyll content. However, the dual and triad applications of EBL (0.1 mg L-1), Spm (25 mg L-1), and Si (7 mg L-1) significantly improved the above parameters. Water stress considerably augmented the levels of H2O2 and MDA. Their content in stress-subjected plants was significantly reduced by triad application. In water-stressed circumstances and after foliar treatments, the activities of superoxide dismutase, catalase, and peroxidase as well as the amounts of total soluble proteins, phenolic compounds, proline, and glycine betaine all improved. Overall, triad application increased the plant's drought resistance and diminished ROS accumulation by raising the scavenging via the enhanced activity of the antioxidant enzymes.


Assuntos
Antioxidantes , Zea mays , Brassinosteroides , Desidratação , Peróxido de Hidrogênio , Silício , Espermina , Esteroides Heterocíclicos
8.
Front Plant Sci ; 13: 881561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860543

RESUMO

This study explains the scarce information on the role of harzianopyridone (HZRP) in the alleviation of chromium (Cr) stress alleviation in Vigna radiata (L.). To this end, V. radiata seedlings primed with HZRP at 1 and 2 ppm were exposed to 50 mg kg-1 Cr for 30 days. Cr stress reduced growth, chlorophyll (Chl) content, net photosynthetic rate, gas-exchange attributes along with enhanced oxidative damages, i.e., electrolyte leakage (EL), hydrogen peroxide (H2O2), and malondialdehyde (MDA). Application of HZRP enhanced intercellular carbon dioxide (CO2) concentration, stomatal conductance, and net photosynthetic rate with decreased activity of the chlorophyllase (Chlase) enzyme in V. radiata seedlings exposed to Cr stressed conditions. To maintain Cr-induced oxidative damages, HZRP treatment increased the levels of antioxidant metabolites (phenolic and flavonoids) and the activity of antioxidative enzymes [superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)] in V. radiata seedlings grown in normal and Cr-polluted potted soil. In addition to this, glycine betaine content was also increased in plants grown in Cr-contaminated soil. It is proposed the potential role of supplementation of HZRP in mitigating Cr stress. Further research should be conducted to evaluate the potential of HZRP in the mitigation of abiotic stresses in plants.

9.
Sci Rep ; 12(1): 11324, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790780

RESUMO

Phytohormones mediate physiological, morphological, and enzymatic responses and are important regulators of plant growth and development at different stages. Even though temperature is one of the most important abiotic stressors for plant development and production, a spike in the temperature may have disastrous repercussions for crop performance. Physiology and growth of two tomato genotypes ('Ahmar' and 'Roma') were studied in two growth chambers (25 and 45 °C) when gibberellic acid (GA3) was applied exogenously. After the 45 days of planting, tomato plants were sprayed with GA3 at concentrations of 25, 50, 75, and 100 mg L-1, whereas untreated plants were kept as control. Under both temperature conditions, shoot and root biomass was greatest in 'Roma' plants receiving 75 mg L-1 GA3, followed by 50 mg L-1 GA3. Maximum CO2 index, photosynthetic rate, transpiration rate, and greenness index were recorded in 'Roma' plants cultivated at 25 °C, demonstrating good effects of GA3 on tomato physiology. Likewise, GA3 enhanced the proline, nitrogen, phosphorus, and potassium levels in the leaves of both genotypes at both temperatures. Foliar-sprayed GA3 up to 100 mg L-1 alleviated the oxidative stress, as inferred from the lower concentrations of MDA and H2O2, and boosted the activities of superoxide dismutase, peroxidase, catalase. The difference between control and GA3-treated heat-stressed plants suggests that GA3 may have a function in mitigating heat stress. Overall, our findings indicate that 75 mg L-1 of GA3 is the optimal dosage to reduce heat stress in tomatoes and improve their morphological, physiological, and biochemical characteristics.


Assuntos
Solanum lycopersicum , Giberelinas/farmacologia , Resposta ao Choque Térmico , Solanum lycopersicum/genética , Fotossíntese
10.
Front Plant Sci ; 13: 941246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873965

RESUMO

This study aimed to determine the effect of hydrogen sulfide on chilling injury (CI) of banana (Musa spp.) during cold storage (7°C). It was observed that hydrogen sulfide application (2 mmol L-1) markedly reduced the CI index and showed significantly higher chlorophyll contents, along with suppressed chlorophyll peroxidase and chlorophyllase enzyme activity. The treated banana fruits exhibited substantially higher peel lightness (L*), along with significantly a lower browning degree and soluble quinone content. The treated bananas had substantially a higher endogenous hydrogen sulfide content and higher activity of its biosynthesis-associated enzymes such as D-cysteine desulfhydrase (DCD) and L-cysteine desulfhydrase (LCD), along with significantly lower ion leakage, lipid peroxidation, hydrogen peroxide, and superoxide anion concentrations. Hydrogen sulfide-treated banana fruits showed an increased proline content and proline metabolism-associated enzymes including ornithine aminotransferase (OAT), Δ1-pyrroline-5-carboxylate synthetase (P5CS), and proline dehydrogenase (PDH). In the same way, hydrogen sulfide-fumigated banana fruits accumulated higher endogenous γ-aminobutyric acid (GABA) due to enhanced activity of glutamate decarboxylase (GAD) and GABA transaminase (GABA-T) enzymes. The hydrogen sulfide-treated fruits exhibited higher total phenolics owing to lower polyphenol oxidase (PPO) and peroxidase (POD) activity and stimulated phenylalanine ammonia lyase (PAL). The treated banana exhibited higher ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and superoxide dismutase (SOD) activity, along with higher glutathione (GSH) and ascorbic acid (AsA) concentrations and a significantly lower dehydroascorbic acid (DHA) content. In conclusion, hydrogen sulfide treatment could be utilized for CI alleviation of banana fruits during cold storage.

11.
Sci Rep ; 12(1): 9272, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661116

RESUMO

The use of complementary light spectra is a potential new approach to studying the increase in plant resilience under stress conditions. The purpose of this experiment was to investigate the effect of different spectra of complementary light on the growth and development of strawberry plants under salinity and alkalinity stress conditions. Plants were grown in the greenhouse under ambient light and irradiated with blue (460 nm), red (660 nm), blue/red (1:3), and white/yellow (400-700 nm) light during the developmental stages. The stress treatments were as follows: control (non-stress), alkalinity (40 mM NaHCO3), and salinity (80 mM NaCl). Our results showed that salinity and alkalinity stress decreased fresh and dry weights and the number of green leaves, and increased chlorotic, tip burn, and dry leaves. The blue and red spectra had a greater effect on reducing the effects of stress compared to other spectra. Stress conditions decreased SPAD and RWC, although blue light increased SPAD, and blue/red light increased RWC under stress conditions. Blue/red and white/yellow light had the greatest effect on reproductive traits. Stress conditions affected fruit color indicators, and red and blue light had the most significant effect on these traits. Under stress conditions, sodium uptake increased, while K, Ca, Mg, and Fe uptake decreased, markedly. Blue and red light and their combination alleviated this reducing effect of stress. It can be concluded that the effects of salinity and alkalinity stresses can be reduced by manipulating the supplemental light spectrum. The use of artificial light can be extended to stresses.


Assuntos
Fragaria , Crescimento e Desenvolvimento , Luz , Folhas de Planta , Salinidade
12.
Sci Rep ; 12(1): 10002, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705667

RESUMO

Identifying environmental factors that improve plant growth and development under nitrogen (N) constraint is essential for sustainable greenhouse production. In the present study, the role of light intensity and N concentrations on the biomass partitioning and physiology of chrysanthemum was investigated. Four light intensities [75, 150, 300, and 600 µmol m-2 s-1 photosynthetic photon flux density (PPFD)] and three N concentrations (5, 10, and 15 mM N L-1) were used. Vegetative and generative growth traits were improved by increase in PPFD and N concentration. High N supply reduced stomatal size and gs in plants under lowest PPFD. Under low PPFD, the share of biomass allocated to leaves and stem was higher than that of flower and roots while in plants grown under high PPFD, the share of biomass allocated to flower and root outweighed that of allocated to leaves and stem. As well, positive effects of high PPFD on chlorophyll content, photosynthesis, water use efficiency (WUE), Nitrogen use efficiency (NUE) were observed in N-deficient plants. Furthermore, photosynthetic functionality improved by raise in PPFD. In conclusion, high PPFD reduced the adverse effects of N deficiency by improving photosynthesis and stomatal functionality, NUE, WUE, and directing biomass partitioning toward the floral organs.


Assuntos
Chrysanthemum , Nitrogênio , Nitrogênio/farmacologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Água/farmacologia
13.
Front Plant Sci ; 13: 890181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651778

RESUMO

Nitrogen (N) fertilization plays a pivotal role in physiomorphological attributes and yield formation of field-grown cotton (Gossypium hirsutum L.), but little is known of its interaction with irrigation levels. Therefore, this study was conducted with an objective of evaluating the impact of irrigation and nitrogen levels on growth attributes and nitrogen use efficiency of Bt cotton (Gossypium spp.) in the hot arid region. The experiment consisted of a factorial arrangement of three irrigation levels (200, 400, and 600 mm) and four nitrogen rates (0, 75, 150, and 225 kg ha-1) in a split-plot design with three replications. Nitrogen fertilization and irrigation levels influenced cotton growth attributes and yield. The highest leaf area index, dry matter accumulation, crop growth rate, and relative growth rate were achieved at 225 kg N ha-1 and irrigation level 600 mm as compared to other experimental treatments. Similarly, nitrogen uptake and content by seed, lint, and stalk and total nitrogen uptake recorded maximum at 225 kg N ha-1 and irrigation level 600 mm. Interestingly, the treatment of 600 mm of irrigation and 150 kg N ha-1 displayed significant increase in nitrogen use efficiency indices such as agronomic efficiency of nitrogen (AEN) and recovery efficiency of nitrogen (REN), while partial factor productivity of nitrogen (PFPN) and internal nitrogen use efficiency (iNUE) were significantly higher with application of 600 mm of irrigation and nitrogen application rate of 75 kg ha-1. Application of 600 mm of irrigation along with 225 kg N ha-1 resulted in significant increase in gross return, net return, and B:C ratio than any other treatment combinations. So, application of 600 mm of irrigation along with 225 kg N ha-1 could be recommended for achieving higher growth and yield, as well as profitability of Bt cotton under hot arid region and similar agroecologies.

14.
PLoS One ; 17(5): e0267987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35605009

RESUMO

Cowpea (Vigna unguiculata) is an important legume which is consumed globally for protein intake, particularly in Asian states. It is a well-known source of dietary fiber, protein, minerals, and vitamins. The cowpea grains are stored after harvest and used till the next harvest. However, the grains are infested by storage pests, primarily Callosobruchus maculatus. Hence, effective management strategies are needed to protect the stored grains form the pests. This study assessed the efficacy of some edible oils in suppressing C. maculatus infestation in stored cowpea grains. Four different botanical oils (i.e., mustard, neem, poppy, and pumpkin) at four different concentrations (i.e., 0.5, 1.0, 1.5 and 2.0 ml per 100 g grain) were included in the study. A control treatment without any botanical oil was also included for comparison. The relevant concentrations of botanical oils were poured into plastic containers containing 100 g cowpea grains and ten C. maculatus adults were released. The jars were sealed and placed at room temperature. Data relating to mortality, oviposition, F1 adult emergence, and seed weight loss were recorded. The tested botanical oils and their concentrations significantly affected mortality after one day. Mortality after 2nd and 3rd days remained unaffected by botanical oils and their different concentrations. The highest mortality was recorded in neem oil-treated grains followed by poppy, pumpkin, and mustard oils. Increased oviposition rate was observed in the grains treated with mustard and pumpkin oils, while those treated with neem and poppy oil recorded decreased oviposition. The control treatment had increased oviposition rate compared to tested botanical oils. All botanical oils significantly inhibited egg laying percentage. The highest germination was recorded for the grains treated with mustard oil followed by pumpkin, poppy, and neem oils, respectively. The lowest germination was recorded for control treatment. Significant differences were noted for C. maculatus repellency among botanical oils. No emergence of adults (F1 progeny) was recorded in all tested botanical oils; thus, F1 progeny was inhibited by 100%. Weight loss, damage percentage, and holes in the grains were not recorded since F1 progeny did not emerge. It is concluded that tested botanical oils are promising and could be utilized to control C. maculatus in cowpea grains during storage.


Assuntos
Besouros , Repelentes de Insetos , Inseticidas , Vigna , Animais , Feminino , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia , Óleos , Redução de Peso
15.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628428

RESUMO

Photosynthetic efficiency is significantly affected by both qualitative and quantitative changes during light exposure. The properties of light have a profound effect on electron transport and energy absorption in photochemical reactions. In addition, fluctuations in light intensity and variations in the spectrum can lead to a decrease in photosystem II efficiency. These features necessitate the use of a simple and suitable tool called chlorophyll a fluorescence to study photosynthetic reactions as a function of the aforementioned variables. This research implies that chlorophyll a fluorescence data can be used to determine precise light conditions that help photoautotrophic organisms optimally function.


Assuntos
Clorofila , Fotossíntese , Clorofila A , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo
16.
Environ Toxicol Pharmacol ; 88: 103746, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536620

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) are a popular group of drugs used worldwide. These drugs are also available over the counter, which implies that their consumption is not strictly regulated. They are released through wastewater and feces and can have adverse effects on the environment. The present study aimed to evaluate the effect of two NSAIDs, diclofenac (DCF) and naproxen (NAP), and their mixture (DCF + NAP) on spring barley seedlings and ostracods Heterocypris incongruens. The tested drugs had a negative impact on bivalve ostracods and the studied plants. DCF was the most toxic toward ostracods, while spring barley seedlings were affected the most by NAP. The application of the tested compounds and their mixture resulted in a decrease in fresh weight yield and the content of photosynthetic pigments. In addition, an increase in H2O2 and proline content and changes in the activity of antioxidant enzymes (POD, APX, CAT, and SOD) were observed.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Crustáceos/efeitos dos fármacos , Diclofenaco/toxicidade , Hordeum/efeitos dos fármacos , Naproxeno/toxicidade , Plântula/efeitos dos fármacos , Animais , Carotenoides/metabolismo , Clorofila/metabolismo , Crustáceos/crescimento & desenvolvimento , Interações Medicamentosas , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
17.
J Clin Med ; 10(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34362024

RESUMO

Elimination diets have recently become extremely popular among people with autoimmune diseases. A gluten-free diet is indicated in celiac disease (CD), but some studies show its effectiveness in cases of autoimmunity. The aim of this study was to assess whether the use of a gluten-free diet is also effective in patients with chronic autoimmune thyroid disease (cAITD), which is the most common thyroid autoimmune pathology associated with chronic inflammation, over-reactivity of the immune system, auto-destruction of thyrocytes and hypothyroidism. The final analysis of the study included 62 Caucasian women randomized into a control group (CG: n = 31) and an experimental group on a gluten-free diet (GFDG: n = 31), were subject to a 12-month follow-up, during which the concentrations of thyrotropin (TSH), free triiodothyronine (fT3), free thyroxine (fT4), anti-thyroid peroxidase (anti-TPO) and anti-thyroglobulin (anti-TG) antibodies were assessed at baseline and after 3, 6 and 12 months. During the 12-month follow-up between the CG and the GFDG, no differences were found in anti-TPO and anti-TG antibodies, fT3 or fT4 levels, except a significant reduction in TSH levels in the GFDG. Additionally, performed analysis between individual appointments presented no significant differences in changes in the median concentrations of anti-TPO, anti-TG or fT3, but confirmed a significant decrease in TSH and showed accessory an increase in fT4 after 12 months in GFDG. Statistical analyses performed separately for both groups indicated a constant reduction of anti-TG concentrations in the GFDG. In conclusion, a GFD may be administered in cAITD after ruling out celiac disease, but it is necessary to perform more studies to assess if cAITD patients achieve the benefits of following a GFD. Patients with cAITD should be offered proper nutrition education combined with a healthy lifestyle promotion.

18.
Sensors (Basel) ; 21(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668135

RESUMO

This study aimed to determine the impact of tetrabutylphosphonium bromide [TBP][Br] on the soil environment through an experiment on loamy sand samples. The tested salt was added to soil samples at doses of 0 (control), 1, 10, 100, and 1000 mg kg-1 dry matter (DM). During the experiment, the activity of selected enzymes involved in carbon, phosphorus, and nitrogen cycles, characteristics of organic matter with Fourier-transform infrared (FT-IR) spectroscopy, and toxicity of soil samples in relation to Aliivibrio fischeri were determined at weekly intervals. The results showed that low doses of [TBP][Br] (1 and 10 mg kg-1 DM) did not have much influence on the analyzed parameters. However, the addition of higher doses of the salt into the soil samples (100 and 1000 mg kg-1 DM) resulted in a decrease in the activity of enzymes participating in the carbon and phosphorus cycle and affected the activation of those enzymes involved in the nitrogen cycle. This may be due to changes in aerobic conditions and in the qualitative and quantitative composition of soil microorganisms. It was also observed that the hydrophobicity of soil organic matter was increased. Moreover, the findings suggested that the soil samples containing the highest dose of [TBP][Br] (1000 mg kg-1 DM) can be characterized as acute environmental hazard based on their toxicity to Aliivibrio fischeri bacteria. The increased hydrophobicity and ecotoxicity of the soil samples exposed to the tested salt were also positively correlated with the activity of dehydrogenases, proteases, and nitrate reductase. Observed changes may indicate a disturbance of the soil ecochemical state caused by the presence of [TBP][Br].


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/enzimologia , Compostos Organofosforados/toxicidade , Poluentes do Solo/toxicidade , Solo , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Artigo em Inglês | MEDLINE | ID: mdl-33668855

RESUMO

The objective of this study was to assess the soil pollution on an industrial wasteland, where coal-tar was processed in the period between 1880 and 1997, and subsequent to assess the decline in the content of phenols and polycyclic aromatic hydrocarbons (PAHs) during enhanced natural attenuation. The soil of the investigated area was formed from a layer of uncompacted fill. Twelve sampling points were established in the investigated area for collecting soil samples. A study conducted in 2015 did not reveal any increase in the content of heavy metals, monoaromatic hydrocarbons (BTEX), and cyanides. However, the content of PAHs and phenols was higher than the content permitted by Polish norms in force until 2016. In the case of PAHs, it was observed for individual compounds and their total contents. Among the various methods, enhanced natural attenuation was chosen for the remediation of investigated area. Repeated analyses of the contents of phenols and PAHs were conducted in 2020. The results of the analyses showed that enhanced natural attenuation has led to efficient degradation of the simplest substances-phenol and naphthalene. The content of these compounds in 2020 was not elevated compared to the standards for industrial wastelands. The three- and four-ring hydrocarbons were degraded at a lower intensity. Based on the mean decrease in content after 5-year enhanced natural attenuation, the compounds can be arranged in the following order: phenols > naphthalene > phenanthrene > fluoranthene > benzo(a)anthracene > chrysene > anthracene.


Assuntos
Alcatrão , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Carvão Mineral , Monitoramento Ambiental , Poluição Ambiental , Fenol , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
20.
Environ Sci Pollut Res Int ; 28(7): 8117-8127, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33051843

RESUMO

The aim of this study was to assess the changes in chemical and microbial properties and enzymatic activity of soil enriched with vermicompost derived from household waste. The vermicompost was tested in the rhizosphere of Larix decidua seedlings cultivated in 10-L pots in: (i) nursery soil (as the control), (ii) soil with 10% v/v vermicompost, and (iii) with 20% v/v vermicompost. The impact of vermicompost was assessed in terms of soil C/N ratio; bacterial, fungal, and nematode counts; and enzymatic activity. It was found that vermicompost increased the C/N ratio from 21 to 32, as well as the content of nitrate from 78 to 134 mg kg-1, of ammonium from 14 to 139 mg kg-1, of phosphorus from 92 to 521 mg kg-1, and of potassium from 142 to 1912 mg kg-1, compared with the control soil. The abundance of beneficial bacteria was increased (from 8.61 × 107 to 37.9 × 107), along with decreases in microbiological ratios of fungi and bacteria (e.g. fungi/Bacillus from 0.18818 to 0.00425). A significant 2- to 4-fold increase was observed compared with the control in the number of beneficial nematodes belonging to bacterivorous, fungivorous, and predatory groups with no change in the abundance of plant-parasitic nematodes. Addition of vermicompost brought about a change in soil enzyme activity. Vermicompost reduced the activity of alkaline phosphatase only. Both doses of vermicompost led to an increase in the activity of acid phosphatase, inorganic pyrophosphatase, dehydrogenases, ß-glucosidase, and urease. Only the higher dose had an effect on increasing the activity of o-diphenol oxidase and proteases. No significant change was observed for nitrate reductase. Also, the presence of antibiotics produced by bacteria was detected depending on the dose of vermicompost, e.g. iturin (ituC) and bacillomycin (bmyB) were found in soil with a dose of 20% v/v vermicompost. Overall, vermicompost produced from household waste can be an excellent organic fertilizer for larch forest nurseries.


Assuntos
Fertilizantes , Solo , Florestas , Fósforo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...